

федеральное государственное бюджетное образовательное учреждение высшего образования

«Кемеровский государственный медицинский университет» Министерства здравоохранения Российской Федерации

УТВЕРЖДАЮ

Заведующий кафедрой медицинской биохимии д.м.н., профессор О.В. Груздева

(подпись)

«30» августа 2025 г.

ТЕМАТИЧЕСКИЙ ПЛАН

практических занятий дисциплины «**БИОХИМИЯ**»

для студентов 2 курса Лечебного факультета III семестр 2025-2026 учебного года

No	Тематика практических	Кол-во
п/п	занятий	уч.часов
1	Строение и биологическая роль липидов. Начальные этапы обмена липидов	4
2	Синтез жирных кислот, жиров и фосфолипидов. Эйкозаноиды	4
3	Обмен холестерола и кетоновых тел	4
4	Регуляция и нарушения обмена липидов	4
5	Коллоквиум 1: Обмен липидов	4
6	Общие и специфические пути обмена аминокислот	4
7	Конечные пути азотистого обмена. Образование и обезвреживание аммиака	4
8	Обмен нуклеотидов	4
9	Матричные биосинтезы: Репликация. Транскрипция. Трансляция	4
10	Коллоквиум 2: Обмен аминокислот и нуклеотидов. Матричные синтезы	4
11	Биохимия печени	4
12	Биохимия крови	4
	ИТОГО	48

14. Классификация и номенклатура ферментов. Характеристика классов и основных подклассов ферментов (с примерами реакций): оксидоредуктазы, трансферазы, гидролазы, лиазы (синтазы), изомеразы, лигазы (синтетазы).

3. ВИТАМИНЫ

- 15. Витамины: определение, общая характеристика, классификация, биологические функции. Гипо-, а- и гипервитаминозы: определение, причины развития, признаки, принципы профилактики и лечения. Провитамины и антивитамины: определение, краткая характеристика отдельных представителей, биологическая роль.
- 16. Витамин А: химическая структура, биологическая роль, суточная потребность, признаки гипо- и гипервитаминоза. L-каротин: строение, роль.
- 17. Витамины группы К: общая характеристика, химическая структура, биологическая роль, признаки гиповитаминоза.
- 18. Витамины группы Е: Общая характеристика, химическая структура, биологическая роль, суточная потребность, признаки гипо- и гипервитаминозов.
- 19. Витамины группы Д: общая характеристика, химическая структура, биологическая роль, суточная потребность, признаки гипо- и гипервитаминозов. Пути образования метаболически активных форм витамина Д и участие их в регуляции минерального обмена.
- 20. Витамин B1: общая характеристика, химическая структура, биологическая роль, суточная потребность, признаки гиповитаминоза. Нарушения углеводного обмена при недостатке витамина B1.
- 21. Витамин В2: общая характеристика, химическое строение, биологическая роль, суточная потребность, признаки гиповитаминоза.
- 22. Витамин РР: общая характеристика, химическая структура, биологическая роль, суточная потребность, признаки гиповитаминоза.
- 23. Пантотеновая кислота: общая характеристика, химическая структура, биологическая роль.
- 24. Витамин В6: общая характеристика, химическая структура, биологическая роль, суточная потребность, признаки гиповитаминоза.
- 25. Витамин В9 (фолиевая кислота): общая характеристика, химическая структура, биологическая роль, суточная потребность, признаки гиповитаминоза. Механизм действия сульфаниламидных препаратов.
- 26. Витамин В12: общая характеристика, особенности химического строения, биологическая роль, суточная потребность, признаки гиповитаминоза.
- 27. Витамины С и Р: общая характеристика, химическое строение, биологическая роль, суточная потребность, признаки гиповитаминоза.
- 28. Витамин Н (биотин): общая характеристика, химическое строение, биологическая роль.

4. ГОРМОНЫ

- 29. Гормоны: определение, общая характеристика, классификация. Отличительные черты истинных и тканевых гормонов. Место гормонов в системе регуляции жизнедеятельности организма.
- 30. Механизм действия гормонов. Механизм передачи сигнала в клетку для гормонов, не проникающих в неё; вторые посредники и их роль в этом процессе.
- 31. Гормоны гипоталамуса и гипофиза: общая характеристика, химическая природа, виляние на обмен веществ, место в системе нейрогуморальной регуляции.
- 32. Тиреоидные гормоны: общая характеристика, химическая структура, биосинтез, механизм действия, влияние на обмен веществ.

- 33. Адреналин и норадреналин: общая характеристика, химическая структура, биосинтез и инактивация, механизм действия, влияние на обмен веществ.
- 34. Инсулин и глюкагон: общая характеристика, химическая природа, места образования и инактивации, механизм действия, влияние на обмен веществ. Образование инсулина из препроинсулина, видовые различия инсулина.
- 35. Гормоны коры надпочечников: общая характеристика, химическая структура, исходные субстраты и схема биосинтеза, механизм действия, влияние на обмен веществ.
 - 36. Гормональная регуляция обмена кальция и фосфатов.
- 37. Гормональная регуляция водно-солевого обмена. Строение и функции альдостерона и АДГ. Ренин-ангиотензиновая система. Биохимические механизмы возникновения почечной гипертонии, отёков, обезвоживания тканей.
- 38. Эйкозаноиды и кининовая система, участие в регуляции метаболизма и физиологических функций. Биохимические изменения при воспалении.

5. ОСНОВНЫЕ ПУТИ МЕТАБОЛИЗМА. БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ И БИОЭНЕРГЕТИКА

- 39. Роль пищи в жизнедеятельности и сохранении здоровья человека. Метаболизм: определение, общая характеристика, составные части, метаболические пути. Катаболизм и анаболизм, их взаимосвязь.
- 40. Общие и специфические метаболические пути. Центральные метаболиты и ключевые ферменты.
- 41. Окислительное декарбоксилирование пирувата: внутриклеточная локализация процесса, ферменты и коферменты, последовательность и химизм реакций, биологическая роль, энергетический эффект.
- 42. Ацетил-КоА: химическое строение, место в процессах метаболизма, пути образования и использования в организме.
- 43. Цикл трикарбоновых кислот (ЦТК): общая характеристика, место в обмене веществ и энергии, внутриклеточная локализация, последовательность и химизм реакций, характеристика ферментов, связь с дыхательной цепью, биологические функции. Механизмы регуляции цитратного цикла.
- 44. Современные представления о биологическом окислении. Конечный акцептор электронов и протонов у млекопитающих. Виды и способы биологического окисления. Общая схема транспорта электронов и протонов от окисляемых субстратов на кислород.
- 45. Ферменты и коферменты окислительно-восстановительных реакций: классификация, общая характеристика.
- 46. НАД+ и НАД Φ +, Φ АД и Φ МН как основные кофакторы дегидрогеназ: общая характеристика, химическое строение, химизм окислительно-восстановительных реакций с их участием.
- 47. Дыхательная цепь митохондрий: определение, общая характеристика, основные компоненты и их структурно-функциональная организация, принцип работы, биологическая роль. Регуляция цепи переноса электронов. Дыхательный контроль.
- 48. Ингибиторы дыхательной цепи: общая характеристика, точки приложения ингибиторов и последствия их действия для клетки.
- 49. Микросомальное окисление: общая характеристика, ферменты и кофакторы, схема реакций гидроксилирования и их биологическое значение.
- 50. Основные макроэргические соединения клетки: общая характеристика, химическое строение, биологическая роль. Примеры реакций и метаболических процессов, протекающих с их участием.
- 51. ATФ: химическая структура, биологическая роль, цикл АТФ-АДФ, основные способы фосфорилирования АДФ, их отличительные черты.

- 52. Окислительное фосфорилирование: определение, общая характеристика, внутриклеточная локализация процесса, механизм, биологическая роль.
- 53. Взаимосвязь гликолиза, бета-окисления жирных кислот, цикла трикарбоновых кислот, дыхательной цепи и окислительного фосфорилирования.
- 54. Ингибиторы и разобщители дыхательной цепи и окислительного фосфорилирования: общая характеристика, механизм действия, медико-биологическое значение. Гипоксические состояния.

6. СТРОЕНИЕ, ОБМЕН И ФУНКЦИИ УГЛЕВОДОВ

- 55. Углеводы: определение, классификация, химическое строение, биологическая роль.
- 56. Углеводы пищи: общая характеристика, суточная потребность, биологическое значение, химическое строение отдельных представителей моно-, ди- и гомополисахаридов. Переваривание и всасывание углеводов в пищеварительном тракте. Особенности переваривания и усвоения углеводов у детей.
- 57. Физиологически важные гетерополисахариды (гиалуроновая кислота хондроитинсульфаты, гепарин): строение, роль.
- 58. Глюкоза как основной метаболит углеводного обмена. Гексокиназная реакция: внутриклеточная и тканевая локализация, химизм, биологическое значение. Пути образования и использования глюкозо-6-фосфата.
- 59. Гликолиз: определение, внутриклеточная локализация процесса, последовательность и химизм реакций, необратимые этапы и ключевые ферменты, конечные продукты и их дальнейшая судьба в аэробных и анаэробных условиях.
- 60. Полное окисление глюкозы в аэробных условиях дихотомический (непрямой) путь обмена глюкозы: характеристика и локализация отдельных этапов, энергетический эффект, биологическая роль, регуляция.
- 61. Гликолитическая оксидоредукция: определение, химизм, биологическое значение. Челночные механизмы. Роль аэробного и "анаэробного" распада глюкозы в мышцах. Образование и дальнейшая судьба молочной кислоты.
- 62. Прямой путь окисления глюкозы (пентозофосфатный цикл ПФЦ, гексозо монофосфатный шунт): внутриклеточная локализация, стадии, последовательность и химизм реакций до образования фосфопентоз, далее схематично, биологическое значение, взаимосвязь с гликолизом.
- 63. Глюконеогенез: определение, внутриклеточная локализация, исходные субстраты, пути их образования, последовательность реакций и химизм ключевых реакций, биологическая роль, регуляция путей распада глюкозы и глюконеогенеза.
- 64. Гликоген: строение, биологическая роль. Биосинтез и распад гликогена в печени и мышцах: последовательность и химизм реакций, ферменты, конечные продукты и их дальнейшая судьба.
 - 65. Регуляция биосинтеза и распада гликогена в печени и мышцах.
- 66. Клинико-биохимическая характеристика гликогенозов и агликогенозов, принципы терапии.
- 67. Глюкоза крови: источники и пути использования, концентрация. Механизмы поддержания постоянного уровня глюкоземии. Гипо- и гипергликемия, глюкозурия: определение, механизмы развития, болезни, при которых они развиваются. Принцип метода и клинико-диагностическое значение определения концентрации глюкозы в крови и моче.

- 68. Липиды: определение, общая характеристика, классификация, химическая структура, биологическая роль.
- 69. Пищевые жиры: общая характеристика, классификация, химическое строение, суточные нормы потребления (животных и растительных жиров), биологическая роль.
- 70. Переваривание и всасывание продуктов переваривания триацилглицеролов (жиров). Роль желчных кислот в этом процессе. Особенности переваривания жиров у детей. Особенности переваривания и всасывания жиров, содержащих коротко- и среднецепочечные жирные кислоты.
- 71. Желчные кислоты: происхождение, классификация, химическое строение, биологические функции. Печёночно-кишечная циркуляция желчных кислот, биологическое значение и последствия нарушения.
- 72. Ресинтез триацилглицеролов в слизистой кишечника: исходные субстраты и их источники, первичные акцепторы ацильных остатков, последовательность и химизм реакций, ферменты и коферменты, биологическая роль.
- 73. Транспортные липопротеины крови: место образования, особенности состава, строения, обмена и функций разных липопротеинов.
- 74. Гиперлипопротеинемии: определение, классификация, биохимическая и клинико-диагностическая характеристика.
- 75. Гиперлипемия, гипертриацилглицеролемия. гиперхолестеролемия, гиперлипацидемия: определение; состояния, при которых они развиваются.
- 76. Депонирование и мобилизация жиров в жировой ткани: исходные субстраты и конечные продукты, последовательность и химизм реакций, регуляция, биологическая роль.
- 77. Транспорт и использование жирных кислот и глицерола, образующихся при мобилизации жиров в жировой ткани.
- 78. Окисление высших жирных кислот: общая характеристика, виды, внутриклеточная локализация. □-окисление жирных кислот: последовательность и химизм реакций, ферменты и коферменты, конечные продукты и пути их использования, связь с ЦТК, дыхательной цепью; энергетические эффекты.
- 79. Перекисное окисление липидов: общая характеристика, происхождение исходных субстратов, конечные продукты и их дальнейшая судьба, внутриклеточная локализация, биологическое значение в норме и патологии.
- 80. Биосинтез жирных кислот: общая характеристика, внутриклеточная локализация, исходные и специфические субстраты, ферменты и коферменты, последовательность и химизм реакций, биологическая роль.
- 81. Эйкозаноиды: определение, общая характеристика, классификация, биосинтез и инактивация. Биологическая роль и строение отдельных представителей, применение на практике.
- 82. Биосинтез триацилглицеролов и фосфолипидов: общая характеристика, внутриклеточная и тканевая локализация, исходные субстраты и пути их образования, последовательность и химизм реакций, необходимые ферменты и коферменты, биологическая роль.
- 83. Жировая инфильтрация печени: определение, механизмы развития, биохимические принципы профилактики и лечения.
- 84. Холестерол: строение, потребность, биологическая роль. Биосинтез холестерола: внутриклеточная и тканевая локализация, исходные субстраты и пути их образования, основные этапы, химизм реакций до образования мевалоновой кислоты, представления о дальнейших этапах, регуляция. Медицинская коррекция.
 - 85. -Биохимические критерии риска развития атеросклероза и его осложнений.
- 86. Кетоновые тела: общая характеристика, химическое строение, содержание в крови и моче, биологическая роль. Биосинтез и использование кетоновых тел:

внутриклеточная и тканевая локализация, исходные субстраты и пути их образования, химизм реакций. Кетогенез при патологии.

87. Регуляция липидного обмена.

8. ОБМЕН АМИНОКИСЛОТ, НУКЛЕОТИДОВ. МАТРИЧНЫЕ СИНТЕЗЫ

- 88. Основные функции аминокислот и белков в организме. Суточная потребность в белках. Биологическая ценность пищевых белков. Азотистый баланс.
- 89. Переваривание и всасывание продуктов переваривания белков. Гниение аминокислот в кишечнике и пути обезвреживания токсических продуктов.
- 90. Диагностическое значение биохимического анализа желудочного сока. Протеиназы поджелудочной железы, биохимические механизмы развития панкреатита. Биохимические обоснования применения ингибиторов протеаз в лечении панкреатита.
- 91. Трансаминирование: определение, общая характеристика, внутриклеточная локализация, ферменты и коферменты, механизм, биологическая роль. Специфичность трансаминаз. Клинико-диагностическое значение определения активности трансаминаз в плазме.
- 92. Дезаминирование аминокислот как основной путь их катаболизма: определение, общая характеристика, внутриклеточная локализация, ферменты и коферменты, механизм прямого и непрямого окислительного дезаминирования, биологическая роль.
- 93. Обмен фенилаланина и тирозина: общая характеристика, биологическое значение, химизм реакций. Наследственные нарушения обмена, биохимические основы их клинических проявлений; клинико-лабораторная диагностика и коррекция.
- 94. Обмен глицина, серина, метионина. Значение этих аминокислот для процесса образования одноуглеродных фрагментов и реакций трансметилирования.
- 95. Биосинтез мочевины: общая характеристика, внутриклеточная и тканевая локализация, источники аминогрупп, последовательность и химизм реакций, связь с ЦТК, нарушения синтеза и выведения мочевины.
- 96. Принцип метода и клинико-диагностическое значение определения содержания мочевины в плазме и моче.
- 97. Декарбоксилирование аминокислот: общая характеристика, механизм, ферменты и коферменты, биологическое значение. Биогенные амины: образование и инактивация, структурные формулы и биологические функции отдельных представителей.
 - 98. Нуклеотидный пул клеток, пути его пополнения и расходования.
- 99. Биосинтез дезоксирибонуклеотидов: общая характеристика, особенности, исходные субстраты, последовательность реакций, использование конечных продуктов,
- 100. ДНК: строение, биологическая роль. Репликация ДНК: определение, общая характеристика, последовательность этапов, механизм, необходимые ферменты и белковые факторы, биологическое значение. Обратная транскрипция: общая характеристика, механизм, ферменты, биологическая роль.
- 101. Мутации: определение, типы, биологическая роль. Повреждения и репарация ДНК.
- 102. Биосинтез РНК (транскрипция): определение, общая характеристика, механизм, ферменты и белковые факторы, биологическое значение. Посттранскрипционное "созревание" РНК: внутриклеточная локализация, механизм, биологическое значение.
 - 103. Генетический код, его характеристика.
- 104. т-РНК: особенности состава, строения, адапторная функция в биосинтезе белков. Образование аминоацил-т-РНК: общая характеристика, химизм реакций, ферменты, физиологическая роль. Субстратная специфичность аминоацил-т-РНК-синтетаз.
- 105. Биосинтез белков (трансляция): определение, внутриклеточная локализация, основные компоненты белоксинтетической системы, фазы трансляции, химизм реакций при биосинтезе полипептидной цепи. Характеристика пострансляционных изменений.

106. Применение ингибиторов обмена нуклеиновых кислот и биосинтеза белка в медицинской практике.

9. ИНТЕГРАЦИЯ ОБМЕНОВ. ЧАСТНЫЙ ОБМЕН

- 107. Кровь: определение, общая характеристика, биологическая роль. Химический состав плазмы. Наиболее важные биохимические показатели крови и клиникодиагностическое значение их определения.
- 108. Белки плазмы крови: характеристика, классификация, места их синтеза, биологическая роль отдельных представителей. Изменения белкового спектра при различных заболеваниях. Принцип метода и клинико-диагностическое значение количественного определения общего белка плазмы крови.
- 109. Ферменты крови: общая характеристика, происхождение. Энзимодиагностика: принципы, примеры использования для постановки диагноза, проведения дифференциальной диагностики, определения эффективности терапевтических мероприятий, степени тяжести и прогноза заболеваний.
- 110. Основные механизмы обезвреживания в печени токсических соединений. Реакции микросомального окисления и реакции конъюгации с глутатионом, глюкуроновой и серной кислотами. Метаболизм лекарственных веществ. Обмен этанола. Представление о химическом канцерогенезе.