

федеральное государственное бюджетное образовательное учреждение высшего образования

«Кемеровский государственный медицинский университет» Министерства здравоохранения Российской Федерации

УТВЕРЖДАЮ Заведующий кафедрой медицинской биохимии д.м.н., профессор О.В. Груздева

«30» августа 2025 г.

СПИСОК ВОПРОСОВ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ по дисциплине «БИОХИМИЯ»

для студентов 2 курса Педиатрического факультета IV семестр 2025-2026 учебного года

- 1. Белки: определение, общая характеристика, биологическая роль. Физико-химические свойства, условия осаждения белков из растворов, денатурация. Использование свойств белков в клинической и лабораторной практике.
- 2. Современные представления о структурной организации белков. Особенности формирования первичной структуры, строение и свойства пептидной связи. Видовая специфичность и полиморфизм белков.
- 3. Конформация белковых молекул: вторичная и третичная структура, разновидности, связи их стабилизирующие.
- 4. Четвертичная структура: общая характеристика, типы стабилизирующих еè связей, кооперативные эффекты, биологические преимущества по сравнению с белками более низкой структурной организации (на примере гемоглобина и миоглобина).
- 5. Классификация простых и сложных белков. Характеристика свойств и биологическая роль белков отдельных классов.
- 6. Хромопротеины. Гемоглобин: строение, структура гема, биологическая роль. Наследственные гемоглобинопатии (серповидноклеточная анемия).
- 7. Цветные реакции на аминокислоты и белки, применение их в клинико-лабораторных исследованиях.
- 8. Ферменты: определение, краткая характеристика, отличия от небиологических катализаторов. Кинетические свойства ферментов: зависимость скорости реакций от концентрации субстрата и фермента, от температуры и рН среды.
- 9. Строение ферментов. Активный центр: определение, структурная организация, роль. Особенности строения и биологическая роль аллостерических ферментов.
- 10. Простые и сложные ферменты. Кофакторы. Апо- и коферменты, простетические группы. Коферментные функции витаминов В1, В2, пантотеновой кислоты, РР, В6., В9.
- 11. Современные представления о механизме действия ферментов. Стадии фер-ментативного катализа. Роль конформационных изменений при катализе.
- 12. Регуляция скорости ферментативных реакций (уровни, способы, биологическая роль). Активаторы и ингибиторы ферментов. Виды ингибирования. Аллостерические эффекторы.
- 13. Мультиферментные комплексы: особенности строения и участия в катализе, биологическое значение, примеры. Тканевая и органная специфичность ферментов. Изоферменты: определение, общая характеристика. Энзимодиагностика и энзимотерапия, применение ингибиторов ферментов в медицинской практике.
- 14. Классификация и номенклатура ферментов. Характеристика классов и основных подклассов ферментов (с примерами реакций): оксидоредуктазы, трансферазы, гидролазы, лиазы (синтазы), изомеразы, лигазы (синтетазы).

- 15. Витамины: определение, общая характеристика, классификация, биологические функции. Гипо-, а- и гипервитаминозы: определение, причины развития, при-знаки, принципы профилактики и лечения. Провитамины и антивитамины: оп-ределение, краткая характеристика отдельных представителей, биологическая роль.
- 16. Витамин А: химическая структура, биологическая роль, суточная потребность, признаки гиповитаминоза.
- 17. Витамины группы К: общая характеристика, химическая структура, биологическая роль, признаки гиповитаминоза.
- 18. Витамины группы Е: Общая характеристика, химическая структура, биологическая роль, суточная потребность, признаки гипо- и гипервитаминозов.
- 19. Витамины группы Д: общая характеристика, химическая структура, биологическая роль, суточная потребность, признаки гипо- и гипервитаминозов. Особенности проявления гиповитаминоза Д у детей. Пути образования метаболически активных форм витамина Д и участие их в регуляции минерального обмена.
- 20. Витамин В1: общая характеристика, химическая структура, биологическая роль, суточная потребность, признаки гиповитаминоза. Коферментная функция. Нарушения углеводного обмена при недостатке витамина В1.
- 21. Витамин В2: общая характеристика, химическое строение, биологическая роль, суточная потребность. Коферментная функция. признаки гиповитаминоза.
- 22. Витамин РР (В5): общая характеристика, химическая структура, биологическая роль, суточная потребность. Коферментная функция. признаки гиповитаминоза.
- 23. Пантотеновая кислота (В3): общая характеристика, химическая структура, биологическая роль, коферментная функция.
- 24. Витамин В6: общая характеристика, химическая структура, биологическая роль, коферментная функция, суточная потребность, признаки гиповитаминоза.
- 25. Витамин В9 (фолиевая кислота): общая характеристика, химическая структура, биологическая роль, суточная потребность, признаки гиповитаминоза. Механизм действия сульфаниламидных препаратов.
- 26. Витамин В12: общая характеристика, особенности химического строения, биологическая роль, суточная потребность, признаки гиповитаминоза.
- 27. Витамины С и Р: общая характеристика, химическое строение, биологическая роль, суточная потребность, признаки гиповитаминоза.
- 28. Витамин Н (биотин): общая характеристика, химическое строение, биологическая роль.
- 29. Гормоны: определение, общая характеристика, классификация. Отличительные черты истинных и тканевых гормонов. Место гормонов в системе регуляции жизнедеятельности организма.
- 30. Механизм действия гормонов. Механизм передачи сигнала в клетку для гормонов, не проникающих в неè; вторичные посредники и их роль в этом процессе.
- 31. Гормоны гипоталамуса и гипофиза: общая характеристика, химическая природа, виляние на обмен веществ, место в системе нейрогуморальной регуляции.
- 32. Тиреоидные гормоны: общая характеристика, химическая структура, биосинтез, механизм действия, влияние на обмен веществ.
- 33. Адреналин и норадреналин: общая характеристика, химическая структура, биосинтез и инактивация, механизм действия, влияние на обмен веществ.
- 34. Инсулин и глюкагон: общая характеристика, химическая природа, места образования и инактивации, механизм действия, влияние на обмен веществ. Образование инсулина из препроинсулина, видовые различия инсулина.
- 35. Гормоны коры надпочечников: общая характеристика, химическая структура, исходные субстраты и схема биосинтеза, механизм действия, влияние на обмен веществ.
- 36. Гормональная регуляция обмена кальция и фосфатов.
- 37. Гормональная регуляция водно-солевого обмена. Строение и функции альдостерона и АДГ. Ренин-ангиотензиновая система.
- 38. Эйкозаноиды, химическая природа, основные представители, участие в регуляции метаболизма и физиологических функций.

- 39. Роль пищи в жизнедеятельности и сохранении здоровья человека. Метаболизм: определение, общая характеристика, составные части, метаболические пути. Катаболизм и анаболизм, их взаимосвязь, возрастные особенности.
- 40. Общие и специфические метаболические пути. Центральные метаболиты и ключевые ферменты.
- 41. Окислительное декарбоксилирование пирувата: внутриклеточная локализация процесса, ферменты и коферменты, последовательность и химизм реакций, биологическая роль, энергетический эффект.
- 42. Ацетил-КоА: химическое строение, место в процессах метаболизма, пути образования и использования в организме.
- 43. Цикл трикарбоновых кислот (ЦТК): общая характеристика, место в обмене веществ и энергии, внутриклеточная локализация, последовательность и химизм реакций, характеристика ферментов, связь с дыхательной цепью, биологические функции.Механизмы регуляции цитратного цикла.
- 44. Современные представления о биологическом окислении. Конечный акцептор электронов и протонов у млекопитающих. Виды и способы биологического окисления.
- 45. Ферменты и коферменты окислительно-восстановительных реакций: классификация, общая характеристика.
- 46. Оксидазы: определение, общая характеристика, химизм реакций с их участием, биологическая роль, примеры.
- 47. Аэробные дегидрогеназы: определение, общая характеристика, кофакторы ферментов, химизм реакций, биологическая роль, примеры.
- 48. Анаэробные дегидрогеназы: НАД-зависимые и флавиновые дегидрогеназы, цитохромы. Общая характеристика, место и роль в окислительно-восстановительных процессах, примеры.
- 49. Каталазы, пероксидазы: определение, общая характеристика, химизм реакций с их участием, биологическая роль, примеры.
- 50. Оксигеназы: общая характеристика, кофакторы, химизм реакций с их участием. Биологическая роль моно- и диоксигеназ, примеры.
- 51. НАД+ и НАД Φ +, Φ АД и Φ МН как основные кофакторы дегидрогеназ: общая характеристика, химическое строение, химизм окислительно-восстановительных реакций с их участием.
- 52. Убихинон: химическое строение, место и роль в окислительно-восстановительных процессах.
- 53. Образование углекислого газа и воды конечных продуктов обмена веществ.
- 54. Дыхательная цепь митохондрий: определение, общая характеристика, основные компоненты и их структурно-функциональная организация, принцип работы, биологическая роль. Регуляция деятельности цепи переноса электронов. Дыхательный контроль.
- 55. Ингибиторы дыхательной цепи: общая характеристика, точки приложения ингибиторов и последствия их действия для клетки.
- 56. Микросомальное окисление: общая характеристика, ферменты и кофакторы, схема реакций гидроксилирования и их биологическое значение.
- 57. Основные макроэргические соединения клетки: общая характеристика, химическое строение, биологическая роль. Примеры реакций и метаболических процессов, протекающих с их участием.
- 58. АТФ: химическая структура, биологическая роль, цикл АТФ-АДФ, основные способы фосфорилирования АДФ, их отличительные черты.
- 59. Окислительное фосфорилирование: определение, общая характеристика, внутриклеточная локализация процесса, механизм, биологическая роль.
- 60. Взаимосвязь гликолиза, бета-окисления жирных кислот, цикла трикарбоновых кислот, дыхательной цепи и окислительного фосфорилирования.
- 61. Ингибиторы и разобщители дыхательной цепи и окислительного фосфорилирования: общая характеристика, механизм действия, медико-биологическое значение. Гипоксические состояния.

- 62. Углеводы: определение, классификация, химическое строение, биологическая роль.
- 63. Углеводы пищи: общая характеристика, суточная потребность, биологическое значение, химическое строение отдельных представителей моно-, ди- и гомо-полисахаридов. Переваривание и всасывание углеводов в пищеварительном тракте. Особенности переваривания углеводов в раннем детском возрасте.
- 64. Физиологически важные гетерополисахариды (гиалуроновая кислота, хондроитинсульфаты, гепарин): строение, роль.
- 65. Глюкоза как основной метаболит углеводного обмена. Гексокиназная реакция: внутриклеточная и тканевая локализация, химизм, биологическое значение. Пути образования и использования глюкозо-6-фосфата.
- 66. Гликолиз: определение, внутриклеточная локализация процесса, последовательность и химизм реакций, необратимые этапы и ключевые ферменты, конечные продукты и их дальнейшая судьба в аэробных и анаэробных условиях.
- 67. Полное окисление глюкозы в аэробных условиях дихотомический (непрямой) путь обмена глюкозы: характеристика и локализация отдельных этапов, энергетический эффект, биологическая роль, регуляция.
- 68. Гликолитическая оксидоредукция: определение, химизм, биологическое значение. Челночные механизмы. Роль аэробного и анаэробного распада глюкозы в мышцах. Образование и дальнейшая судьба молочной кислоты.
- 69. Прямой путь окисления глюкозы (пентозофосфатный цикл ПФЦ): внутриклеточная локализация, стадии, последовательность (химизм реакций до образования фосфопентоз (далее схематично), биологическое значение, взаимосвязь с гликолизом.
- 70. Глюконеогенез: определение, внутриклеточная локализация, исходные субстраты, пути их образования, последовательность реакций и химизм ключевых реакций, биологическая роль, регуляция путей распада глюкозы и глюконеогенеза.
- 71. Гликоген: строение, биологическая роль. Биосинтез и распад гликогена в печени и мышцах: последовательность и химизм реакций, ферменты, конечные продукты и их дальнейшая судьба. Регуляция биосинтеза и распада гликогена в печени и мышцах. Особенности обмена гликогена в раннем детском возрасте.
- 72. Особенности обмена глюкозы в разных клетках и тканях (эритроциты, мозг, мышцы, жировая ткань, печень).
- 73. Клинико-биохимическая характеристика гликогенозов и агликогенозов.
- 74. Сахарный диабет: определение, общая характеристика, нарушения обмена веществ. Клинико-лабораторная диагностика сахарного диабета.
- 75. Диабетические комы: определение, классификация, лабораторная диагностика, биохимические механизмы развития, биохимические принципы профилактики и лечения.
- 76. Метаболизм фруктозы и галактозы. Галактоземия и наследственные нарушения обмена фруктозы: механизм метаболических нарушений, биохимическая диагностика, принципы коррекции.
- 77. Глюкоза крови: источники и пути использования, концентрация, Механизмы поддержания постоянного уровня глюкоземии. Гипо- и гипергликемия, глюкозурия: определение, механизмы развития, болезни и состояния, при которых они развиваются, Особенности содержания глюкозы в детском возрасте. Принцип метода и клиникодиагностическое значение определения концентрации глюкозы в крови и моче.
- 78. Нейроэндокринная регуляция углеводного обмена. Гипо- и гипергликемические гормоны, механизм их действия.
- 79. Липиды: определение, общая характеристика, классификация, химическая структура, биологическая роль.
- 80. Пищевые жиры: общая характеристика, классификация, химическое строение, суточные нормы потребления (животных и растительных жиров), биологическая роль.
- 81. Переваривание и всасывание продуктов переваривания триацилглицеролов (жиров). Роль желчных кислот в этом процессе. Особенности переваривания жиров у детей.

- 82. Желчные кислоты: происхождение, классификация, химическое строение, биологические функции. Печеночно-кишечная циркуляция желчных кислот, биологическое значение и последствия нарушения.
- 83. Ресинтез триацилглицеролов в слизистой кишечника: исходные субстраты и их источники, первичные акцепторы ацильных остатков, последовательность и химизм реакций, ферменты и коферменты, биологическая роль.
- 84. Транспортные липопротеины крови: место образования, особенности состава, строения, обмена и функций разных липопротеинов.
- 85. Гиперлипопротеинемии: определение, классификация, биохимическая и клиникодиагностическая характеристика.
- 86. Гиперлипемия, гипертриацилглицеролемия. гиперхолестеролемия, состояния, при которых они развиваются.
- 87. Депонирование и мобилизация жиров в жировой ткани: исходные субстраты и конечные продукты, последовательность и химизм реакций, регуляция, биологическая роль.
- 88. Транспорт и использование жирных кислот и глицерола, образующихся при мобилизации жиров в жировой ткани.
- 89. Окисление высших жирных кислот: общая характеристика, виды, внутриклеточная локализация окисления жирных кислот: последовательность и химизм реакций, ферменты и коферменты, конечные продукты и пути их использования, связь с ЦТК, дыхательной цепью; энергетические эффекты.
- 90. Перекисное окисление липидов: общая характеристика, происхождение исходных субстратов, конечные продукты и их дальнейшая судьба, внутриклеточная локализация, биологическое значение в норме и патологии.
- 91. Биосинтез жирных кислот: общая характеристика, внутриклеточная локализация, исходные и специфические субстраты, ферменты и коферменты, последовательность и химизм реакций, биологическая роль.
- 92. Особенности обмена ненасыщенных жирных кислот и жирных кислот с нечетным числом атомов углерода. Биологическая роль полиеновых жирных кислот.
- 93. Биосинтез триацилглицеролов и фосфолипидов: общая характеристика, внутриклеточная и тканевая локализация, исходные субстраты и пути их образования, последовательность и химизм реакций, необходимые ферменты и коферменты, биологическая роль. Общие и отличительные черты этих процессов. Роль спасательного пути биосинтеза фосфатидилхолина.
- 94. Жировая инфильтрация печени: определение, механизмы развития, биохимические принципы профилактики и лечения.
- 95. Холестерол: строение, потребность, биологическая роль. Биосинтез холестерола: основные этапы, химизм реакций до образования мевалоновой кислоты, представления о дальнейших этапах, регуляция.
- 96. Гиперхолестеролемия: определение, причины развития, медико-биологическое значение. Атеросклероз и желчнокаменная болезнь: биохимические основы развития, профилактики и лечения.
- 97. Принцип метода и клинико-диагностическое значение определения концентрации холестерола в плазме. Биохимические критерии риска развития атеросклероза и его осложнений.
- 98. Кетоновые тела: общая характеристика, химическое строение, содержание в крови и моче, биологическая роль. Биосинтез и использование кетоновых тел: внутриклеточная и тканевая локализация, исходные субстраты и пути их образования, химизм реакций. Кетогенез при патологии.
- 99. Взаимосвязь обмена глюкозы, жирных кислот, триацилглицеролов, фосфолипидов, холестерола и кетоновых тел. Схема превращения глюкозы в жиры. Зависимость скорости биосинтеза жиров от мышечной активности, психоэмоционального состояния, ритма питания и состава пищи.
- 100. Гормональная и метаболическая регуляция липидного обмена.

- 101. Клеточные мембраны: строение, состав, функции. Механизмы переноса веществ через мембраны.
- 102. Основные функции аминокислот и белков в организме. Суточная потребность в белках. Биологическая ценность пищевых белков. Азотистый баланс.
- 103. Переваривание и всасывание продуктов переваривания белков. Гниение аминокислот в кишечнике и пути обезвреживания токсических продуктов. Особенности переваривания белков у детей раннего возраста, роль реннина.
- 104. Диагностическое значение биохимического анализа желудочного сока. Возрастные особенности рН и кислотности желудочного сока. Протеиназы поджелудочной железы, биохимические механизмы развития панкреатита.
- 105. Источники образования и пути использования аминокислот в организме. Заменимые и незаменимые аминокислоты.
- 106. Трансаминирование: определение, общая характеристика, внутриклеточная локализация, ферменты и коферменты, механизм, биологическая роль. Специфичность трансаминаз. Клинико-диагностическое значение определения активности трансаминаз в плазме.
- 107. Дезаминирование аминокислот как основной путь их катаболизма: определение, общая характеристика, внутриклеточная локализация, ферменты и коферменты, механизм прямого и непрямого окислительного дезаминирования, биологическая роль.
- 108. Обмен фенилаланина и тирозина: общая характеристика, биологическое значение, химизм реакций. Наследственные нарушения обмена, биохимические основы их клинических проявлений; клинико-лабораторная диагностика и коррекция.
- 109. Обмен глицина, серина, метионина. Значение этих аминокислот для процесса образования одноуглеродных фрагментов и реакций трансметилирования.
- 110. Пути образования, обезвреживания и использования аммиака в организме.
- 111. Биосинтез мочевины: общая характеристика, внутриклеточная и тканевая локализация, источники аминогрупп, последовательность и химизм реакций, связь с ЦТК, нарушения синтеза и выведения мочевины.
- 112. Принцип метода и клинико-диагностическое значение определения содержания мочевины в плазме и моче.
- 113. Декарбоксилирование аминокислот: общая характеристика, механизм, ферменты и коферменты, биологическое значение. Биогенные амины: образование и инактивация, структурные формулы и биологические функции отдельных представителей.
- 114. Метаболизм безазотистых остатков аминокислот. Кето- и глюкогенные аминокислоты.
- 115. Биосинтез заменимых аминокислот, источники атомов углерода и азота. Взаимосвязь обмена аминокислот с обменом углеводов, липидов и ЦТК.
- 116. Глутамин: роль в обмене аммиака, биосинтезе азотсодержащих соединений. Образование и выведение солей аммония, биологическое значение при ацидозе.
- 117. Нуклеотидный пул клеток, пути его пополнения и расходования.
- 118. Биосинтез пуриновых нуклеотидов: общая характеристика, происхождение атомов азота и углерода пуринового ядра, используемые субстраты и пути их образования, химизм реакций до 5-фосфорибозиламина, представление о дальнейших этапах до АТФ и ГТФ. Использование конечных продуктов, регуляция.
- 119. Распад пуриновых нуклеотидов: общая характеристика, последовательность и химизм реакций, дальнейшая судьба конечных продуктов. Гиперурикемия. Подагра. Синдром Леша-Нихана.
- 120. Биосинтез и катаболизм пиримидиновых нуклеотидов: общая характеристика, последовательность и химизм реакций, используемые субстраты и пути их образования, дальнейшая судьба конечных продуктов, регуляция, нарушения.
- 121. Биосинтез дезоксирибонуклеотидов: общая характеристика, особенности, исходные субстраты, последовательность реакций, использование конечных продуктов, регуляция.
- 122. Нуклеопротеины: характеристика белкового и небелкового компонентов, биологическая роль. Нуклеиновые кислоты: общая характеристика, особенности состава, структурной организации и биологической роли различных нуклеиновых кислот.

- 123. ДНК: строение, биологическая роль. Репликация ДНК: определение, общая характеристика, последовательность этапов, механизм, необходимые ферменты и белковые факторы, биологическое значение. Обратная транскрипция: общая характеристика, механизм, ферменты, биологическая роль.
- 124. Мутации: определение, типы, биологическая роль. Повреждения и репарация ДНК.
- 125. Биосинтез РНК (транскрипция): определение, общая характеристика, механизм, ферменты и белковые факторы, биологическое значение. Посттранскрипционное созревание РНК: внутриклеточная локализация, механизм, биологическое значение.
- 126. Генетический код, его характеристика.
- 127. т-РНК: особенности состава, строения, адапторная функция в биосинтезе белков. Образование аминоацил-т-РНК: общая характеристика, химизм реакций, ферменты, физиологическая роль. Субстратная специфичность аминоацил-т-РНК-синтетаз.
- 128. Биосинтез белков (трансляция): определение, внутриклеточная локализация, основные компоненты белоксинтезирующей системы, фазы трансляции, химизм реакций при биосинтезе полипептидной цепи. Характеристика пострансляционных изменений.
- 129. Регуляция процесса биосинтеза белка на стадии транскрипции, трансляции и посттрансляционного созревания.
- 130. Применение ингибиторов синтеза нуклеиновых кислот и биосинтеза белка в медицинской практике.
- 131. Кровь: определение, общая характеристика, биологическая роль. Химический состав плазмы. Наиболее важные биохимические показатели крови и клинико-диагностическое значение их определения.
- 132. Белки плазмы крови: характеристика, классификация, места их синтеза, биологическая роль отдельных представителей. Изменения белкового спектра при различных заболеваниях. Принцип метода и клинико-диагностическое значение количественного определения общего белка плазмы крови. Особенности содержания белка в плазме крови у новорожденных.
- 133. Ферменты крови: общая характеристика, происхождение. Энзимодиагностика: принципы, примеры использования для постановки диагноза, проведения дифференциальной диагностики, определения эффективности терапевтических мероприятий, степени тяжести и прогноза заболеваний.
- 134. Буферные системы крови: общая характеристика, классификация, компоненты, механизм действия, связь с другими системами регуляции КЩС организма. Значение постоянства рН для метаболических процессов.
- 135. Эритроциты: общая характеристика, биологические функции, особенности метаболизма.
- 136. Биосинтез и распад гемоглобина: общая характеристика, тканевая локализация процессов, последовательность реакций, источники исходных субстратов и судьба конечных продуктов.
- 137. Печень: общая характеристика, особенности метаболизма. Внутриклеточная локализация ферментов. Участие печени в обмене аминокислот и белков, углеводов, липидов, пигментов, микроэлементов, гормонов.
- 138. Билирубин: общая характеристика, химическое строение; пути образования, обезвреживания и выведения из организма. Желтухи: определение, классификация, биохимические критерии дифференциальной диагностики. Биохимические механизмы развития, профилактики и лечения желтухи новорожденных. Принцип метода и клиникодиагностическое значение определения желчных пигментов (билирубина).
- 139. Основные механизмы обезвреживания в печени токсических соединений. Реакции микросомального окисления и реакции конъюгации с глутатионом, глюкуроновой и серной кислотами. Метаболизм лекарственных веществ. Обмен этанола. Представление о химическом канцерогенезе.

140. Токсичность кислорода. Образование активных форм кислорода, их действие на липиды и другие структурно-функциональные компоненты клеток. Повреждение мембран в результате перекисного окисления липидов. Биохимические механизмы защиты от токсического действия кислорода: супероксиддисмутаза, каталаза, глутатионпероксидаза, витамин Е и другие природные и синтетические антиоксиданты. Клинико-диагностическое значение определения активности глюкоза-6 фосфат ДГ